6 research outputs found

    Machine learning-based prediction of breast cancer growth rate in-vivo

    Get PDF
    BackgroundDetermining the rate of breast cancer (BC) growth in vivo, which can predict prognosis, has remained elusive despite its relevance for treatment, screening recommendations and medicolegal practice. We developed a model that predicts the rate of in vivo tumour growth using a unique study cohort of BC patients who had two serial mammograms wherein the tumour, visible in the diagnostic mammogram, was missed in the first screen.MethodsA serial mammography-derived in vivo growth rate (SM-INVIGOR) index was developed using tumour volumes from two serial mammograms and time interval between measurements. We then developed a machine learning-based surrogate model called Surr-INVIGOR using routinely assessed biomarkers to predict in vivo rate of tumour growth and extend the utility of this approach to a larger patient population. Surr-INVIGOR was validated using an independent cohort.ResultsSM-INVIGOR stratified discovery cohort patients into fast-growing versus slow-growing tumour subgroups, wherein patients with fast-growing tumours experienced poorer BC-specific survival. Our clinically relevant Surr-INVIGOR stratified tumours in the discovery cohort and was concordant with SM-INVIGOR. In the validation cohort, Surr-INVIGOR uncovered significant survival differences between patients with fast-growing and slow-growing tumours.ConclusionOur Surr-INVIGOR model predicts in vivo BC growth rate during the pre-diagnostic stage and offers several useful applications

    A Mismatch-Based Model for Memory Reconsolidation and Extinction in Attractor Networks

    Get PDF
    The processes of memory reconsolidation and extinction have received increasing attention in recent experimental research, as their potential clinical applications begin to be uncovered. A number of studies suggest that amnestic drugs injected after reexposure to a learning context can disrupt either of the two processes, depending on the behavioral protocol employed. Hypothesizing that reconsolidation represents updating of a memory trace in the hippocampus, while extinction represents formation of a new trace, we have built a neural network model in which either simple retrieval, reconsolidation or extinction of a stored attractor can occur upon contextual reexposure, depending on the similarity between the representations of the original learning and reexposure sessions. This is achieved by assuming that independent mechanisms mediate Hebbian-like synaptic strengthening and mismatch-driven labilization of synaptic changes, with protein synthesis inhibition preferentially affecting the former. Our framework provides a unified mechanistic explanation for experimental data showing (a) the effect of reexposure duration on the occurrence of reconsolidation or extinction and (b) the requirement of memory updating during reexposure to drive reconsolidation
    corecore